Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance

D = weak solution

s = saturated aqueous solution

- +/0 =conditinoal resistance + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration * = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

N.B. PTFE is resistant against most chemicals ans solvents (excluding fluorine, metallic sodium and other alkali metals). PVDF is resistant against most chemicals (excluding ketones, esters).

Chemical	Formula	Concentr ation	Acrylic	PVC	316 SS	PE	PP	Viton®	EPDM	PVDF	Teflon
Acetaldehyde	CH₃CHO	100%	-	-	+	+	0	-	+/0	+	+
Acetamide	CH ₃ CONH ₂	S	+	+	+	+	+	0	+	+	+
Acetic Acid	CH₃COOH	100%	-	+(50%)	+	+(70%)	+	-	0	+	+
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	+	0	0	-	+/0	-	+
Acetone	CH ₃ COCH ₃	100%	-	-	+	+	+	-	-	0	+
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	+	+	-	+	+	+
Acetyl Chloride	CH₃COCL	100%	-	+	0	-	-	+	-	-	+
Acetylacetone	C ₅ H ₈ O ₂	100%	-	-	+	+	+	-	+	-	+
AcetyleneDichloride=> Acetylene Tetrachloride=>	DiChloroethylene Tetrachloroethane										
Acrylonitrile	CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	+	+
Adipic Acid	C ₆ H ₁₀ O ₄	S	+	+	+	+	+	+	+	+	+
Allyl Alcohol	CH2CHCH2OH	96%	-	0	+	+	+	-	+	+	+
Aluminum Acetate	AI(CH ₃ COO) ₃	S	+	+	+	+	+	+	+	+	+
Aluminum Bromide	AlBr ₃	S	+	+	n	+	+	+	+	+	+
Aluminum Chloride	AICI ₃	S	+	+	-	+	+	+	+	+	+
Aluminum Fluoride	AIF ₃	10%	+	+	-	+	+	+	+	+	+
Aluminum Hydroxide	AI(OH) ₃	S	+	+	+	+	+	+	+	+	+
Aluminum Nitrate	AI(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+
Aluminum Phosphate	AIPO ₄	S	+	+	+	+	+	+	+	+	+
Aluminum Sulfate	AI(SO ₄) ₃	S	+	+	+	+	+	+	+	+	+
Ammonium Acetate	CH ₃ COONH ₄	S	+	+/0	+	+	+	+	+	+	+
Amonium Aluminum Sulfate	NH ₄ Al(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+
Ammonium Bicarbonate	NH₄HCO ₃	S	+	+	+	+	+	+	+	+	+
Ammonium Carbonate	(NH ₄) ₂ CO ₃	40%	+	+	+	+	+	+	+	+	+
Ammonium Chloride	NH₄CI	S	+	+	-	+	+	+	+	+	+
Ammonium Fluoride	NH₄F	S	+	0	0	+	+	+	+	+	+
Ammonium Hydrogen Carbona	NH₄HCO₃	A.C.	+	+	+	+	+	+	+	+	+
Ammonium Hydroxide	NH₄OH	S	+	+	+	+	+	-	+	+	+
Ammonium Nitrate	NH ₄ NO ₃	S	+	+	+	+	+	+	+	+	+
Ammonium Oxalate	(NH ₄) ₂ C ₂ O ₄	S	+	+	+	+	+	+	+	+	+
Ammonium Perchlorate	NH ₄ ClO ₄	10%	+	+	+	+	+	+	+	+	+
Ammonium Peroxodisulfate	(NH ₄) ₂ S ₂ O ₈	S	+	+	+(5%)	+	+	+	+	+	+
Ammonium Persulfate	(NH ₄) ₂ S ₂ O ₈	A.C.	+	+	+	+	+	+	+	+	+
Ammonium Phosphate	(NH ₄) ₃ PO ₄	A.C.	+	+	+(10%)	+	+	+	+	+	+
Ammonium Sulfate	(NH ₄) ₂ SO ₄	A.C.	+	+	+(10%)	+	+	+	+	+	+
Ammonium Sulfide	(NH ₄) ₂ S	S	+	+	n	+	+	+	+	+	+
Amyl Alcohol	C ₅ H ₁₁ OH	100%	+	+	+	+	+	-	+	+	+
Aniline	C ₆ H ₅ NH ₂	100%	+	+	+	+	+	-	+/0	+	+
Aniline Hydrochloride	C ₆ H ₅ NH₂HCL	S	n	+	-	+	+	+/0	+/0	+	+
Antimony Trichloride	SbCl ₃	S	+	+	-	+	+	+	+	+	+
Aqua Regia	3HCL+HNO3	100%	-	+	-	-	-	-	0	+	+
Arsenic Acid	H ₃ AsO ₄	S	+	+	+	+	+	+	+	+	+
Barium Carbonate	BaCO ₃	S	+	+	+	+	+	+	+	+	+
Barium Chloride	BaCl ₂	S	+	+	-	+	+	+	+	+	+
Barium Hydroxide	Ba(OH) ₂	S	+	+	+	+	+	+	+	+	+
Barium Nitrate	Ba(NO ₃) ₂	A.C.	+	+	+	+	+	+	+	+	+
Barium Sulfate	BaSO₄	A.C.	+	+	+	+	+	+	+	+	+
Barium Sulfide	BaS	A.C.	+	+	+	+	+	+	+	+	+
Beer Caustic Soda->	- Sodium Hydroxido	100%	+	+	+	+	+	+	+	+	+
Chloric Acid	HCIO ₂	20%	+	+	-	+10%	-	0	0	+	+
Chlorine Dioxide Solution	CIO ₂ +H ₂ O	0.5%	0	+	-	0	0	0	-	+	+
Chloroacetic Acid	CH-CLCOOH	A.C.	-	-	-	-	+	+	+	+	+

Resp. to aqueous solutions

Resp. to aqueous solutions

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance => = refer to A.C. = any concentration

S = saturated solution

Conc. = Concentrated

D = weak solution

s = saturated aqueous solution

- +/0 =conditinoal resistance + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration * = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

Chemical	Formula	Concentr ation	Acrylic	PVC	316 SS	PE	PP	Viton®	EPDM	PVDF	Teflon
Chlorine Water	Cl ₂ +H ₂ O	S	+	+	-	0	0	+	+	+	+
Chlorobenzene	C ₆ H₅CI	100%	-	-	+	0	+	+	-	+	+
Chloroethanol	CICH ₂ CH ₂ OH	100%	-	-	+	+	+	-	0	0	+
Chloroethylbenzine	$C_6H_4CIC_2H_5$	100%	-	-	+	0	0	0	-	n	+
Chlorophenol	C ₆ H₄OHCI	100%	n	n	+	+	+	n	-	+	+
Chlorotoluene	C ₇ H ₈ Cl	100%	-	-	+	n	n	+	-	+	+
Chloroacetone	CICH ₂ COCH ₃	100%	-	-	+	n	n	-	+	n	+
Chlorobutadiene	C₄H₅CI	100%	-	-	+	n	n	+	-	n	+
Chloroform	CHCI3	100%	-	-	+	-	0	+	-	+	+
Chlorohydrin	C ₃ H ₇ O ₂ Cl	100%	n	n	+	+	+	+	0	-	+
Chloroprene=>	Chlorobutadiene										
Chlorosulfonic Acid	SO ₂ (OH)CI	100%	-	-	-	-	-	-	-	-	+
Chrome Sulfate	$Cr_2(SO_4)_3$	S	+	+	+	+	+	+	+	+	+
Chromic Acid	H ₂ CrO ₄	50%	-	+	+(10%)	+	0	+	-	+	+
Chromic Sulfuric Acid	K ₂ CrO ₄ +H ₂ SO ₄	S	-	+	n	-	-	n	n	+	+
Citric Acid	C ₆ H ₈ O ₇	S	+	+	+	+	+	+	+	+	+
Cobalt Chloride	CoCl ₂	S	+	+	-	+	+	+	+	+	+
Copper II Acetate	Cu(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+
Copper II Arsenite	Cu ₂ (AsO ₂) ₂	S	+	+	+	+	+	+	+	+	+
Copper II Carbonate	CuCO	S	+	+	+	+	+	+	+	+	+
Copper II Chloride	CuClo	S		+	+(1%)	+	+	+			+
Copper I Cyanide	Cu(CN)	S	+	+	+	+	+	+	+	+	+
Copper II Eluoride	CuE	6	+	+	+ +	+ +	+	+ +	+	+	+
		6	+	- T	+	+	- -	+	+	+	+
		3	+	+	+	+	+	+	+	+	+
		3	+	+	+	+	+	+	+	+	+
Cresole		100%	0	0	+	+	+	+	-	+	+
		100%	n	-	+	+	+	-	+	+	+
Cyclonexane		100%	+	-	+	+	+	+	-	+	+
Cyclonexanol	0 ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	-	+	+
	Cyclobovonol	100%	-	-	+	+	+	-	+/0	+	+
	CHUN	100%	0	0		n	n		n	n	
Decebydropaphthalina	C. H.	100%	0		+ n	0	0	0			+
	Decabydronaphthaline	100%	-	+/0	n	0	0	0	-	+	+
Diisononyl Phthalate	CoeH40Q4	100%	-	-	+	+	+	n	n	+	+
Diacetone Alcohol	CcH1000	100%	-	-	+	+	+	-	+	+	+
Diamine Ethylene	(CH _a NH _a) _a	100%	n	0	0	+	+		+	+	+
Dibromoethane	CoH Bro	100%		-	÷		n	+			· -
		100%	0	-		0	0		0		
Dibutyl Ethelate		100%	0	_	- -	0				- T	- +
Dibutylamina	(C, H,), NH	100%	-	-	+		+	Ŧ	+/0	+	+
Diobloro Agotio Agid		100%			+	+	+	-	-	+	+
Dichloro Ronzono		100%	-	+	+	+	+	-	+	+	+
Dichloro Butana		100%	-	-	+	0	0	+	-	+	+
Dichlere Butere		100%	-	-	+	0	0	+	-	+	+
Dichloro Buterie		100%	-	-	+	0	0	0	-	+	+
Dextrose	0 ₆ H ₁₂ O ₆	A.C.	+	+	+	+	+	+	+	+	+
Dichloroethylane		100%	-	-	+	•	0	+	-	+	+
Dicnloroethylene		100%	-	-	+	-	0	0	-	+	+
Dichloroisopropyl Ether	(G ₃ H ₆ Cl) ₂ O	100%	-	-	+	0	0	0	0	n	+
Dicyclohexylamine	G ₁₂ H ₂₃ N	100%	0	0	+	+	+	-	+	n	+
Diethylamine	$(C_2H_5)_2NH$	100%	-	-	+	0	+	-	+	+	+
Diethylene Glycol	$C_4H_{10}O_3$	100%	+	+	+	+	+	+	+	+	+
Diethyleneglydolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	+	+

Resp. to aqueous solutions

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance => = refer to A.C. = any concentration

S = saturated solution

Conc. = Concentrated

D = weak solution

s = saturated aqueous solution

- +/0 =conditinoal resistance + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration * = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

Chemical	Formula	Concentr ation	Acrylic	PVC	316 SS	PE	PP	Viton®	EPDM	PVDF	Teflon
Diethyl Ether	(C ₂ H ₅) ₂ O	100%	-	-	+	0	0	-	-	+	+
Diglycolic Acid	$C_4H_6O_5$	30%	+	+	+	+	+	+	n	+	+
Dihexyl Phthalate	C ₂₀ H ₂₆ O ₄	100%	-	-	+	+	+	-	n	+	+
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	+	+
Diisopropylketone	C ₇ H ₁₄ O	100%	-	-	+	+	+	-	+	+	+
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	-	+	+	-	+	+
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	100%	-	-	+	+	+	-	+/0	+	+
Dimthylformamide	HCON(CH ₃) ₂	100%	-	-	+	+	+	-	+	-	+
Dimethylhydrazine	H ₂ NN(CH ₃) ₂	100%	n	n	+	+	+	-	+	+	+
Dioctyl Phthalate	C ₆ H ₄ (COOC ₈ H ₁₇) ₂	100%	-	-	+	+	+	-	+/0	+	+
Dioxane	C ₄ H ₈ O ₂	100%	-	-	+	+	0	-	+/0	0	+
Dimethyl Formic Amide	HCON(CH ₃) ₂	100%	-	-	-	0	+	0	0	-	+
Disodium Hydrogen Phosphate	Na ₂ HPO ₄	S	+	+	+	+	+	+	+	+	+
Disulfur Dichloride	S ₂ Cl ₂	100%	+	+	+	+	+	+	-	+	+
DMF=>	Dimethylformamide										
Engine Oils	-	100%	n	+/0	+	+	+	+	-	+	+
Ethanol	C₂H₅OH	100%	-	+	+	+	+	-	+	+	+
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%	0	n	+	+	+	-	+/0	+	+
Ethyl Acetate	CH ₃ COOC ₂ H ₅	100%	-	-	+	+	+(35%)	-	+/0	-	+
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%	-	-	+	+	+	-	+/0	0	+
Ethyl Benzene	$C_6H_5C_2H_5$	100%	-	-	+	0	0	0	-	+	+
Ethyl Benzoate	$C_6H_5COOC_2H_5$	100%	n	-	+	+	+	+	-	0	+
Ethyl Bromide	C₂H₅Br	100%	n	n	n	+	+	+	-	+	+
Ethyl Chloride	C₅H₅CI	100%	-	-	+	-	-	+	-	+	+
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	+	+
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	+
Ethylacetylacetate	$C_6H_{10}O_3$	100%	n	-	+	+	+	+	-	+	+
Ethylacrylic Acid	C₄H ₇ COOH	100%	n	n	+	+	+	n	+/0	+	+
Ethylene Dibromide	$C_2H_4Br_2$	100%	-	-	+	-	0	+	-	+	+
Ethylene Dichloride	C₂H₄Cl₂	100%	-	-	+	-	0	+	-	+	+
Ethylene Glycol	C₂H₄(OH)₂	100%	+	+	+	+	+	+	+	+	+
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n	+	+	+	n	+/0	+	+
Ethylhexanol		100%	n	+/0	+	+	+	+	+	+	+
Fatty Acids	-	100%	0	0	+	+	+	+	0	+	+
Ferric Chloride	FeCl ₃	S	+	+	-	+	+	+	+	+	+
Ferric Nitrate	Fe(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+
Ferric Phosphate	FePO₄	S	+	+	+	+	+	+	+	+	+
Ferric Sulfate	Fe ₂ (SO ₄) ₃	S	+	+	0	+	+	+	+	+	+
Ferrous Chloride	FeCl ₂	S	+	+	-	+	+	+	+	+	+
Ferrous Sulfate	FeSO₄	S	+	+	+	+	+	+	+	+	+
Fuloro Benzene	C ₆ H ₅ F	100%	-	-	+	0	+	0	-	+	+
Fluoroboric Acid	HBF	35%	+	+	0	+	+	+	+	+	+
Formeldehvde	CH ₂ O	40%	+	+	+	+	+	-	+/0	+	+
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	+	+
Formic Acid	НСООН	S	-	+/0	+	+	+	-	-	+	+
Freon 12,13, 22, 114, 115		100%	-	+	-	-	-	-	-	0	+
Furan	C ₄ H ₄ O	100%	-	-	+	+	+	-	n	-	+
Furane Aldehyde	$C_5H_5O_2$	100%	n	n	n	n	n	-	+/0	0	+
Furfuryl Alcohol	OC₄H₃CH₂OH	100%	-	-	+	+	+	n	+/0	0	+
Gallic Acid	C ₆ H ₂ (OH) ₃ COOH	5%	+	+	+	+	+	+	+/0	+	+
Gasoline	-	100%	-	-	+	+	+	+	-	+	+
Glucose	C ₆ H ₁₂ O ₆	S	+	+	+	+	+	+	+	+	+
Glycerol Triacetate	C ₃ H ₅ (CH ₃ COO) ₃	100%	n	n	+	+	+	-	+	+	+
Glycerol	C ₃ H ₅ (OH) ₃	100%	+	+	+	+	+	+	+	+	+

Resp. to aqueous solutions

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance

S = saturated solution

Conc = Concentrated

D = weak solution

=> = refer to A.C. = any concentration

s = saturated aqueous solution

- +/0 = conditinoal resistance
- + = good resistance 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration

* = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

N.B. PTFE is resistant against most chemicals ans solvents (excluding fluorine, metallic sodium and other alkali metals). PVDF is resistant against most chemicals (excluding ketones, esters)

Concent Chemical Formula Acrylic PVC 316 SS PE PP Viton® EPDM **PVDF** Teflon ation Glycine NH₂CH₂COOH 10% + + + + Glycol $C_2H_4(OH)_2$ 100% + + + + + + + + + Glycolic Acid CH₂OHCOOH 70% +(37%) + + + + + + + C₇H₁₆ Heptane 100% + + + + + + + C₅H₁₁CHO Hexanal 100% n n +/0 + + + + C₆H₁₄ Hexane 100% + + + + + + + + C₆H₁₁OH Hexanol 100% n + + + Hexene C₅H₁₂ 100% n + + + + + + + $N_2H_4*H_2O$ Hydrazine Hydrate S n + + + + + + + Hydrazine N_2H_4 Conc. 0 0 +Hydrobromic Acid HBr 50% + + + + + + Hydrochloric Acid HCI +(32%) 38% ±* 4 + Hydrofluoric Acid HF 80% +(40%) -+(40%) +(40%) + 0 + Hydrofluosilicic Acid H₆SiF₆ 0 30% + + + + + + + Hydrogen Cyanide HCN S + + + + Hydrogen Peroxide H_2O_2 90% +(40%) +(40%) +(30%) +(30%) +(30%) + Hydroiodic Acid HI S + + + + n + + Hydroquinone C₆H₄(OH)₂ S + + + + + + + + Hydrogen Sulfide H₂S s 0 + + + + + + + Hydroxylamine Sulfate (NH₂OH)₂*H₂SO₄ 10% + + + -Hypochlorous Acid HOCI S 0 0 +/0 + + + + + lodine S 0 +/00 + --+ + + Isobutyl Alcohol C₂H₅CH(OH)CH₃ 100% + + + + + + + Isopropyl Chloride CH₃CHCICH₃ 0 80% -0 -+ + + + CH₃COOCH(CH₃)₂ Isopropyl Acetate 100% +/0 + Isopropyl Alcohol (CH₃)₂CHOH 100% 0 +/0 + + + + + + + Isopropyl Benzene C₆H₅CH(CH₃)₂ 100% 0 0 + Isopropyl Ether $C_6H_{14}O$ 100% 0 0 -+ + + -Isopropanol=> Isopropyl Alcohol Lactic Acid C₃H₆O₃ 100% +/0 +(10%) -+ + + + + + Lead II Acetate Pb(CH₃COO)₂ S + + + + + + + Pb(NO₃)₂ Lead Nitrate 50% + + + + + + + + + PbSO₄ Lead Sulfate S + + + + Lead Tetraethyl $Pb(C_2H_5)_4$ 100% 0 + + + + + -+ + Lime Milk => Calcium Hydroxide *Lime Slurrv Ca(OH)₂ S + + + + + + + + + Lithium Bromide LiBr S + + Lithium Chloride LiCl S Magnesium Carbonate MgCO₃ s + + + + + + + + + Magnesium Chloride MgCl₂ s 0 + + + + + + + + *Magnesium Hydroxide Mg(OH)₂ s + + + + ++ ++ + Magnesium Nitrate Mg(NO₃)₂ s + + + + + + + + + MgSO₄ Magnesium Sulfate s + + + Maleic Acid $C_4H_4O_4$ S + + + + + + + + + $C_4H_5O_5$ Malic Acid s + + + + + + + + + Manganese II Chloride MnCl₂ s + + ++ + + + MnSO₄ Manganese Sulfate s + + + + + + + + + Mercuric Chloride HgCl₂ S 100% Mercury Hg + + + + + + + + + Mercury II Chloride HgCl₂ S + + + + + + + Mercury II Cyanide Hg(CN)₂ s + + + Mercury II Nitrate Hg(NO₃)₂ S + + + + + + + + 100% Mesityl Oxide C₆H₁₀O n n +/0 n + Methacrylic Acid C₅H₅COOH 100% n 0 +/0 n CH₃OH Methanol 100% +

Resp. to aqueous solutions

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance => = refer to A.C. = any concentration

S = saturated solution

Conc. = Concentrated

D = weak solution

s = saturated aqueous solution

- +/0 =conditinoal resistance + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration * = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

Chemical	Formula	Concentr ation	Acrylic	PVC	316 SS	PE	PP	Viton®	EPDM	PVDF	Teflon
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0	+	+
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	+	+
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	+	+
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	+	+	+	-	0	+
Methyl Catechol	C ₆ H ₃ (OH) ₂ CH ₃	S	+	+	+	+	+	+	-	+	+
Methyl Cellulose	-	S	+	+	+	+	+	+	+	+	+
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	+	+
Methyl Cyclopentane	$C_5H_9CH_3$	100%	+	+	+	+	+	+	-	+	+
Methyl Dichloroacetate	CICHCOOCH ₃	100%	-	-	+	+	+	-	n	n	+
Methyl Ethyl Ketone (MEK)	CH ₃ COC ₂ H ₅	100%	-	-	+	+	+	-	+	-	+
Methyl Glycol	C ₃ H ₈ O ₂	100%	+	+	+	+	+	-	+/0	+	+
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	+	+	-	0	-	+
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	+
Methyl Methacrylate	C ₃ H₅COOCH ₃	100%	-	-	+	+	+	-	-	+	+
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%	n	n	+	+	+	+	+/0	+	+
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%	-	-	+	+	+	n	+/0	+	+
Methylacetyl Acetate	$C_5H_8O_3$	100%	-	-	+	+	+	-	+/0	+	+
Methylamine	CH ₃ NH ₂	32%	+	0	+	+	+	-	+	0	+
Methylene Chloride	CH ₂ Cl ₂	100%	-	-	0	-	0	+	-	0	+
Milk	-	-	+	+	+	+	+	+	+	+	+
Morpholine	C₄H₃NO	100%	-	-	+	+	+	n	n	+	+
Naphthalene	C ₁₀ H ₈	S	-	-	+	-	+	+	-	+	+
Nickel II Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+
Nickel Chloride	NiCl ₂	S	+	+	-	+	+	+	+	+	+
Nickel Nitrate	Ni(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+
Nickel Sulfate	NiSO	S	+	+	+	+	+	+	+	+	+
Nitric Acid	HNO ₃	99%	n	+(50%)	+(90%)	+(50%)	+(50%)	+(65%)	+(40%)	0	+
Nitro Benzine	C ₆ H ₅ NO ₂	100%	-	-	+	-	+	-	-	+	+
Nitro Methane	CH ₂ NO ₂	100%	-	-	+	+	+	-	+/0	0	+
Nitro Propane	(CH ₂) ₂ CHNO ₂	100%	_	-	+	+	+	-	+/0	n	+
Nitro Toluene	CcH4NO ₂ CH ₂	100%	-	-	+	+	+	0	-	 +	+
	(COOH)	S	+	+	+(10%)		- -	÷	+	-	- -
Octano	C-H	100%		- T	+(1070)	т	- T	- T	т	- T	- T
	C-H-OH	100%	T	Ŧ	- -	+	- +	- T		- T	- +
Octul Cresole	CH. O	100%	=	-	+	+	+	+	+	+	+
		100%	-	-	+	+	+			+	+
Diedin Barablaria Asid		70%	п	-	+	-	- (109/)	+		-	+
Perchione Acid		100%	-	+(10 %)	-	+	+(10 %)	+	+/0	+	+
		100 %	+	+	+	+	+	+	-	+	+
Peracetic Acid	CoH4Oo	50%	_	0	+	0	+	+	0	+	+
Petroleum Ether	C.H.	100%	+	±/0	+ +	U +	+	+	-	+	+
		100%	T	+/0		+	+	- T		- T	+
Phonyl Ethyl Ethor		100%	-	-	+	+	+	+	-	+	+
		100%	-	-	+	+	+	-	-		+
		059/	-	-	+	0	0	0	-	+	+
Phosphoric Acid		1000/	+(50%)	+	+	+	+	+	+	+	+
Phoenhorous Oxychioride		100%	-	-	n	+	+	+	+	+	+
Phosphorous Trichloride		100%	-	-	+	+	+	0	0	+	+
Primalic Acid	$C_6 H_4 (COOH)_2$	S	+	+	+	+	+	+	+	+	+
Picric Acid		S	+	+	+	+	+	+	+	+	+
Piperidine	C ₅ H ₁₁ N	100%	-	-	+	n	n	-	-	n	+
Polyphosphate=>	CH COOK	6									
Potossium Aluminum Oulfal		5	+	+	+	+	+	+	+	+	+
Potassium Auminum Sulfate		5	+	+	+	+	+	+	+	+	+
Foldssium bicarbonale	111003	40%	+	+	+	+	+	+	+	+	+

Resp. to aqueous solutions

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance => = refer to A.C. = any concentration

S = saturated solution

Conc. = Concentrated

D = weak solution

s = saturated aqueous solution

- +/0 = conditinoal resistance + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration * = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

Chemical	Formula	Concentr ation	Acrylic	PVC	316 SS	PE	PP	Viton®	EPDM	PVDF	Teflon
Potassium Bifluoride	KHF ₂	S	n	+	+	+	+	+	+	+	+
Potassium Bisulfate	KHSO4	5%	+	+	+	+	+	+	+	+	+
Potassium Bitartrate	KC₄H₅O ₆	S	+	+	+	+	+	+	+	+	+
Potassium Borate	KBO ₂	S	+	+	+	+	+	+	+	+	+
Potassium Bromate	KBrO ₃	S	+	+	+	+	+	+	+	+	+
Potassium Bromide	KBr	S	+	+	+(10%)	+	+	+	+	+	+
Potassium Carbonate	K ₂ CO ₃	S	+	+	+	+	+	+	+	+	+
Potassium Chlorate	KClO₃	S	+	+	+	+	+	+	+	+	+
Potassium Chloride	KCI	S	+	+	-	+	+	+	+	+	+
Potassium Chromate	K ₂ CrO ₄	10%	+	+	+	+	+	+	+	+	+
Potassium Chrome Sulfate	KCr(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+
Potassium Cyanate	KOCN	S	+	+	+	+	+	+	+	+	+
Potassium Cyanide	KCN	S	+	+	+(5%)	+	+	+	+	+	+
Potassium Cyanoferrate II	K₄Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+
Potassium Dichromate	$K_2 Cr_2 O_7$	S	+	+	+(25%)	+	+	+	+	+	+
Potassium Ferricyanide	K ₃ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+
Potassium Ferrocyanide	K ₄ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+
Potassium Fluoride	KF	S	+	+	+	+	+	+	+	+	+
Potassium Iodide	KOH	50% S	n +	+	+	+	+	-	+	+	+
Potassium Nitrate	KNO3	S	+	+	+	+	+	+	+	+	+
Potassium Perchlorate	KCIO ₄	S	+	+	n	+	+	+	+	+	+
Potassium Permanganate	KMnO ₄	S	+	+	+	+	+	+	+	+	+
Potassium Persulfate	K₂SO₄	S	+	+	+	+	+	+	+	+	+
Potassium Phosphate	KH₂PO₄	S	+	+	+	+	+	+	+	+	+
Potassium Sulfate	K₂SO₄	S	+	+	+	+	+	+	+	+	+
Potassium Sulfite	K ₂ SO ₃	S	+	+	+	+	+	+	+	+	+
Propanol	C ₂ H ₇ OH	100%	-	+	+	+	+	+	+	+	+
Propionic Acid	C ₂ H₅COOH	100%	0	+	+	+	+	+	+	+	+
Propionitrile	CH ₃ CH ₂ CN	100%	n	n	+	+	+	+	-	+	+
Propyl Acetate	CH ₂ COOC ₂ H ₇	100%	-	-	+	+	+	-	+/0	+	+
Propylene Glycol	CH ₂ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+
Pyridine	CoH=N	100%	-	-	+	+	0		-	-	+
Pyrrole	C.H.N	100%	n	n			• +		-	n	
Salicylic Acid	HOCAH,COOH	S	 			, 		+	+		
Sea Water	-	0	+	+	+ 0	+	+	+	+	+	+
Silic Acid	SiO ₂ +H ₂ O	S	+	+	+	+	+	+	+	+	+
Silver Bromide	AgBr	S	+	+	+/0	+	+	+	+	+	+
Silver Chloride	AgCI	S	+	+	-	+	+	+	+	+	+
Silver Nitrate	AgNO ₃	S	+	+	+	+	+	+	-	+	+
Soda Ash =>	Sodium Carbonate										
Sodium Acetate	CH₃COONa	S	+	+	+	+	+	+	+	+	+
Sodium Benzoate	C ₆ H₅COONa	S	+	+	+	+	+	+	+	+	+
Sodium Bicarbonate	NaHCO ₃	S	+	+	+	+	+	+	+	+	+
Sodium Bisulfate	NaHSO ₄	S	+	+	+	+	+	+	+	+	+
Sodium Borate	NaBO ₂	S	+	+	+	+	+	+	+	+	+
Sodium Bromate	NaBrO ₃	S	+	+	+	+	+	+	+	+	+
Sodium Bromide	NaBr	S	+	+	+	+	+	+	+	+	+
Sodium Carbonate	Na ₂ CO ₂	S	+	+	+/0	+	+	+	+	+	+
Sodium Chlorate	NaClO ₃	S	+	+	+	+	+	+	+	+	+
Sodium Chloride	NaCl	S	+	+	-	+	+	+	+	+	+
Sodium Chlorite		24%	+	+	+(10%)	+	+	+	+	+	+
Sodium Chromate	Na ₂ CrO ₄	S	+	+	+	+	+	+	+	+	+
Sodium Cyanide	NaCN NaCr O	S	+	+	+	+	+	+	+	+	+
Socium Dichromate	Na01207	5	+	+	+	+	+	+	+	+	+

Resp. to aqueous solutions

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

n = unknown resistance

S = saturated solution

Conc = Concentrated

D = weak solution

=> = refer to A.C. = any concentration

s = saturated aqueous solution

- +/0 = conditinoal resistance
- + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration

* = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

N.B. PTFE is resistant against most chemicals ans solvents (excluding fluorine, metallic sodium and other alkali metals). PVDF is resistant against most chemicals (excluding ketones, esters).

Concent Chemical Formula Acrylic PVC 316 SS PF PP Viton® EPDM **PVDF** Teflon ation Sodium Dithionite Na₂S₂O₄ +(10%) +(10%) +(10%) S n n + + Sodium Fluoride NaF S +(10%) + + Sodium Hydrogen Sulfate NaHSO₄ S + + + + + + + + + NaHSO₃ Sodium Hydrogen Sulfide s + + + + + + + + + Sodium Hydroxide NaOH 50% Sodium Hypochlorite NaOCI 12% 0 0 + + Sodium Iodide S Nal Sodium Metaphosphate (NaPO₃)n s + + + + + + + + + Sodium Nitrate NaNO₃ s + + + + + + + + + Sodium Nitrite NaNO₂ s + + + + Sodium Oxalate Na₂C₂O₄ S + + + + + + + + + NaBO₂+*H₂O₂ s Sodium Perborate +/0 + + Sodium Perchlorate NaClO₄ S +(10%) + + + + + + + + Sodium Peroxide Na₂O₂ s + + + + + Sodium Persulfate Na₂N₂O₈ S n + ++ + + + + + Sodium Pyrosulfite $Na_2S_2O_5$ s n n + + + + C₆H₄(OH)COONa Sodium Salicylate S +/0 Na₂SiO₃ Sodium Silicate s + + + + + + + + + Sodium Sulfate Na₂SO₄ s + + + + + + + + + Na₂S Sodium Silfide S + + + + + + + + Sodium Sulfite Na₂SO₃ s +(50%) + + + + + + + + Na2B4O7*10H2O Sodium Tetraborate S + + + + + Na₂S₂O₃ Sodium thiosulfate S +(25%) + + + + + Na₅P₃O₁₀ s Sodium Tripolyphosphate + + + + +/0 + Stannic Chloride SnCl₄ 100% + + + + + + 4 Stannous Chloride SnCl₂ S + + + + + + + + Starch (C₆H₁₀O₅)n S + + + C₁₇H₃₅COOH Stearic Acid 100% + + + + + + + + C₆H₅CHCH₂ Stvrene 100% 0 0 0 + Succinic Acid $C_4H_6O_4$ S + + + + + + + Sugar Syrup S + + H₂SO₄ +(30%) Sulfuric Acid 98% +(50%) +(50%) +(20%) +(85%) + + + + H₂SO₃ Sulfurous Acid A.C. +(10%) + + + + + + SO₂Cl₂ Sulfuryl Chloride 100% n + 0 n + Tannic Acid C76H52O46 50% + + $C_4H_6O_6$ Tartaric Acid S +(50%) +/0 + + + + + + Tetrachloroethane C₂H₂Cl₄ 100% 0 0 0 + + + Tetrachloroethene C_2Cl_4 100% 0 0 0 + + + C₄H₈O Tetrahydrofuran 100% --0 0 ++ Tetrahydro Naphthalene $C_6H_4C_4H_8$ 100% 0 Thionyl Chloride SOCI 100% _ _ n + + + Thiophene C₄H₄S 100% 0 0 n n + + Tin II Chloride SnCl2 S 0 + + Tin II Sulfate SnSO₄ s + + + + + + + + SNCI₄ Tin IV Chloride s n + + + + + + + TiCl₄ 100% Titanium Tetrachloride n n n n n 0 + Toluene C₆H₅CH₃ 100% 0 0 0 _ + + + C₇H₆(NCO)₂ Toluene Diisocyanate 100% n +/0 n + n Tributyl Phosphate $(C_4H_9)_3PO_4$ 100% n -+ + + + Trichloroacetaldehyde Hydr. CCI₃CH(OH)₂ s 0 0 0 ++ + Trichloroethane CCI₃CH₃ 100% 0 0 + + Trichloroethene C₂HCl₃ 100% +/0 0 0 0 + + Trichloroethylene C₂HCl₃ 100% 0 0 0 CCI₃COOH 50% 0 Trichloroacetic Acid

Resistance of liquid end materials against common chemicals at standard temperature 68 °F(20 °C). (May differ at other temperatures)

- s = saturated aqueous solution
- +/0 =conditinoal resistance
- + = good resistance
- 0 = limited resistance
- = no resistance

+(x%) = good resistance to x% concentration * = with glued fittings, please check the rsistance of the glue

These classifications are the results of practial experience of the manufacturers of the raw materials. Since the resistance of the materials depends also on other factors(operating conditions, surface quality, etc.), this list cannot be more than a general guide for which no responsigility is accepted. It should be particularly noted that, as a rule, the aggressiveness of a mixture is different from that of its individual components. In cases of doube, suitable tests should be performed.

N.B. PTFE is resistant against most chemicals ans solvents (excluding fluorine, metallic sodium and other alkali metals). PVDF is resistant against most chemicals (excluding ketones, esters).

Chemical	Formula	Concentr ation	Acrylic	PVC	316 SS	PE	PP	Viton®	EPDM	PVDF	Teflon
Tricresy Phosphate	(C ₇ H ₇ O) ₃ PO	90%	n	-	+	+	+	0	+	n	+
Triethanolamine	$N(C_2H_4OH)_3$	100%	-	0	+	+	+	-	+/0	+	+
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	+	+
Trisodium Phosphate	Na ₃ PO ₄	S	+	+	+	+	+	+	+	+	+
Urea	CO(NH ₂) ₂	S	+	+/0	+	+	+	+	+	+	+
Vinyl Acetate	CH ₂ CHOOCCH ₃	100%	-	-	+	0	-	0	-	+	+
Xylene	$C_6H_4(CH_3)_2$	100%	-	-	+	0	-	0	-	0	+
Zinc Acetate	(CH ₃ COO) ₂ Zn	S	+	+	+	+	+	-	+	+	+
Zinc Chloride	ZnCl ₂	S	+	+	-	+	+	+	+	+	+
Zinc Sulfate	ZnSO ₄	S	+	+	+	+	+	+	+	+	+

Resp. to aqueous solutions

n = unknown resistance => = refer to A.C. = any concentration S = saturated solution

Conc. = Concentrated

D = weak solution